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The problem of network-based robust filtering for stochastic systems with sensor nonlinearity is investigated in this paper. In
the network environment, the effects of the sensor saturation, output quantization, and network-induced delay are taken into
simultaneous consideration, and the output measurements received in the filter side are incomplete. The random delays are
modeled as a linear function of the stochastic variable described by a Bernoulli random binary distribution.The derived criteria for
performance analysis of the filtering-error system and filter design are proposed which can be solved by using convex optimization
method. Numerical examples show the effectiveness of the design method.

1. Introduction

In recent years, networked control systems (NCSs) have
been extensively investigated due to thier broad applications
in industrial engineering [1]. NCSs hold a few excellent
advantages such as reduction of costs of cables and power,
simplification of the installation and maintenance of the
whole system, and increase of the reliability [2]. However,
the insertion of the communication channels also arises
some unexpected phenomenon in NCSs such as signals
quantization [1], intermittent data packet losses, and the
signal-transmission delay [3, 4]. These phenomena emerging
in NCSs are known to be the main causes for the perfor-
mance deterioration or even the instability of the controlled
networked system. Over the past few years, intensive research
interest has been reported in a wealth of the literature focus-
ing on the control and filtering problems of NCSs involved
with networked-induced time delay, packet losses, and signal
quantization (see, e.g., [1] and the references therein).

Stochastic phenomenon frequently exhibits in many
branches of science and engineering applications [5–10]. In
the past few years, increasing research interests have recently

been paid to the study of control and filtering problems for
various continuous-time or discrete-time stochastic systems
[5]. For instance, the 𝐻

∞
nonlinear filtering problem has

been investigated for discrete-time stochastic systems subject
to signal quantization in [2]. The design problem of state
estimation and stabilization for a nonlinear networked con-
trol systems has been addressed in [11], while the𝐻

∞
output

feedback control problem has been considered in [12].
In practical physical systems, sensors and actuators can-

not always provide unlimited amplitude signal mainly due
to the physical or safety constraints [13]. The phenomenon
of sensor and/or actuator saturation can yield significant
limitations on various aspects of sensor and/or actuator
performance, for example, the range limitations that results
in the nonlinear characteristic of sensors and/or actuator
[13, 14]. For actuator saturation, a great deal of attention
has been focused on the control and filtering problems
for various types of systems [15]. In particular, the control
problem has been investigated for continuous-time linear
delay systems subject to quantization and saturation in [16],
where both quantized state and quantized input are taken into
consideration.
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Figure 1: The structure of networked filtering systems.

It should be pointed out that, if we consider the filtering
problem for stochastic systems in a realistic networked envi-
ronment, the effects of sensor saturation, sensor quantization,
and random communication delay always exhibit simulta-
neously. However, in networked environments, the sensor
saturation may occur to be involved with state-dependent
disturbance, and it may result from random sensor failures
leading to intermittent saturation, sensor aging resulting in
changeable saturation level, repairs of partial components,
changes in the interconnections of subsystems, and so forth.
Therefore, when investigating the filtering problems of NCSs
with a stochastic plant, themodel under consideration should
be more comprehensive to reflect the realities such as the the
state-dependent stochastic disturbances, the coupling effects
of sensor saturation, output quantization, and networked-
induced transmission delay. Unfortunately, however, to the
best of the authors’ knowledge, the 𝐻

∞
filtering problem on

stochastic systems subject to sensor saturation, quantization,
and random communication delay has not been investigated
and remains to be important and challenging.This motivates
our current work.

In this paper, we are concerned with the filter design
problem for discrete-time networked stochastic systems sub-
ject to output saturation, quantization, and random com-
munication delay. The networked-induced communication
delay phenomena are modeled by a Bernoulli random
binary distributed white sequence with a known conditional
probability. In this network setting, the effects of sensor
saturation, output quantization, and communication delay in
the digital communication channel exhibit simultaneously,
and the signal received in the filter side is imperfect. The
objective is to analyze and design a robust filter such that
the asymptotic estimates of system states are obtained by
employing the incomplete output measurements. Moreover,
sufficient conditions will be proposed such that the derived
filtering error system is robustly stochastically stable with a
prescribed disturbance attenuation level. Finally, a numerical
example is provided to illustrate the effectiveness of the
proposed filtering design approach.

Throughout the paper, E{⋅} is the mathematical expec-
tation. ‖ ⋅ ‖ denotes the Euclidean norm of a vector. Given
a symmetric matrix 𝐴, the notation 𝐴 > 0 (<0) denotes a
positive definite matrix (negative definite, resp.). 𝐼

𝑛
denotes

an identity matrix with dimension 𝑛.

2. Problem Description

We consider the following discrete-time stochastic system
with state-dependent disturbance:

𝑥 (𝑘 + 1) = 𝐴𝑥 (𝑘) + 𝐵𝜐 (𝑘) + [𝐸𝑥 (𝑘) + 𝐺𝜐 (𝑘)] 𝑤 (𝑘) ,

𝑦 (𝑘) = 𝐶𝑥 (𝑘) ,

𝑦
𝜙
(𝑘) = 𝜙 (𝑦 (𝑘)) ,

𝑦
𝑞
(𝑘) = 𝑞 (𝑦

𝜙
(𝑘)) ,

𝑧 (𝑘) = 𝐿𝑥 (𝑘) ,

(1)

where 𝑥(𝑘) ∈ R𝑛 is the state; 𝑦(𝑘) ∈ R𝑝 is the output; the
saturation function 𝜙(⋅) is defined as in (3); 𝑦

𝑞
(𝑘) ∈ R𝑝 is

the quantized output, and 𝑞(⋅) is the logarithmic quantizer
defined in (6)-(7); 𝑧(𝑘) ∈ R𝑟 is the state combination to be
estimated; 𝐴 ∈ R𝑛×𝑛, 𝐵 ∈ R𝑛×𝑚, 𝐶 ∈ R𝑝×𝑛, 𝐸 ∈ R𝑛×𝑛,
𝐺 ∈ R𝑛×𝑚, and 𝐿 ∈ R𝑟×𝑛 are known constant matrices.

In plant (1), 𝑤(𝑘) is a standard one-dimensional random
process on a probability space (Ω,F,P), where Ω is the
sample space, F is the 𝜎-algebra of subsets of the sample
space, andP is the probability measure onF. The sequence
of 𝑤(𝑘) is generated by (𝑤(𝑘))

𝑘∈N where N denotes the set of
natural numbers, and it satisfies thatE{𝑤(𝑘)} = 0,E{𝑤(𝑘)2} =
1, E{𝑤(𝑖)𝑤(𝑗)} = 0 for 𝑖 ̸= 𝑗.

Besides, it is assumed that the exogenous distur-
bance 𝜐(𝑘) ∈ R𝑚 belongs to L

𝐸
2

([0,∞);R𝑚), where
L
𝐸
2

([0,∞);R𝑚) denotes the space of 𝑘-dimensional nonan-
ticipatory square-integrable process 𝜑(⋅) = (𝜑(𝑘))

𝑘∈N on N

with respect to (𝜑
𝑘
)
𝑘∈N, and 𝜑(⋅) satisfies

𝜑


2

𝐸
2

= E{
∞

∑

𝑘=0

𝜑 (𝑘)


2

} =

∞

∑

𝑘=0

E {
𝜑 (𝑘)



2

} < ∞. (2)

Remark 1. As seen in plant (1), the phenomena of sensor
quantization and saturation are taken into consideration
simultaneously, which is one of the main contributions of
this paper. Although there have been much of the literature
devoted to quantized filtering, few of which has considered
the effect of sensor saturation.

The structure of the quantized filtering system is illus-
trated in Figure 1.
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We denote 𝑦(𝑘) as 𝑦
𝑘
for simplicity in the following

discussion. It is assumed that the saturation function 𝜙(⋅) :

R𝑝 → R𝑝 in (1) belongs to [𝐾
1
, 𝐾
2
] for some given diagonal

matrices 𝐾
1
∈ R𝑝×𝑝, 𝐾

2
∈ R𝑝×𝑝 with 𝐾

1
≥ 0, 𝐾

2
≥ 0 and

𝐾
2
> 𝐾
1
, and 𝜙(⋅) satisfies the following sector condition:

(𝜙 (𝑦
𝑘
) − 𝐾
1
𝑦
𝑘
)
𝑇

(𝜙 (𝑦
𝑘
) − 𝐾
2
𝑦
𝑘
) ≤ 0, ∀𝑦

𝑘
∈ R
𝑞

. (3)

In the light of (3), the nonlinear function 𝜙(𝑦
𝑘
) can be

decomposed into a linear and a nonlinear part as follows:

𝜙 (𝑦
𝑘
) = 𝜙
𝑠
(𝑦
𝑘
) + 𝐾
1
𝑦
𝑘
, (4)

and the nonlinearity 𝜙
𝑠
(𝑦
𝑘
) satisfies 𝜙

𝑠
(𝑦
𝑘
) ∈ Φ

𝑠
, where the

set Φ
𝑠
is defined as

Φ
𝑠
≜ {𝜙
𝑠
: 𝜙
𝑇

𝑠
(𝑦
𝑘
) (𝜙
𝑠
(𝑦
𝑘
) − 𝐾𝑦

𝑘
) ≤ 0} , (5)

and𝐾 ≜ 𝐾
2
− 𝐾
1
.

In this paper, we employ the logarithmic quantizer for
system (1) which is described as follows:

𝑞 (⋅) = [𝑞
1
(⋅) , 𝑞
2
(⋅) , . . . , 𝑞

𝑝
(⋅)]
𝑇

, (6)

and 𝑞
𝑖
(⋅) is defined as follows:

𝑞
𝑖
(𝜙 (𝑦
𝑖
(𝑘)))

=

{{{{{{{{{{{{{{{{{{{

{{{{{{{{{{{{{{{{{{{

{

𝜂
(𝑗)

𝑖

if 1

1 + 𝛿
𝑖

𝜂
(𝑗)

𝑖
< 𝜙 (𝑦

𝑖
(𝑘))

≤
1

1 − 𝛿
𝑖

𝜂
(𝑗)

𝑖
,

𝜙 (𝑦
𝑖
(𝑘)) > 0,

0

if 𝜙 (𝑦
𝑖
(𝑘)) = 0,

−𝑞
𝑖
(−𝜙 (𝑦

𝑖
(𝑘)))

if 𝜙 (𝑦
𝑖
(𝑘)) < 0, 𝑖 = 1, 2, . . . , 𝑝;

𝑗 = ±1, ±2, . . . ,

(7)

where 𝛿
𝑖
= (1 − 𝜌

𝑖
)/(1 + 𝜌

𝑖
) are the quantizer parameters.

In fact, the logarithmic quantizer (7) can be characterized
by the following form:

𝑞 (𝜙 (𝑦
𝑘
)) = (𝐼

𝑝
+ Λ (𝑘)) 𝜙 (𝑦

𝑘
) , (8)

where

Λ (𝑘) = diag {Λ
1
(𝑘) , Λ

2
(𝑘) , . . . , Λ

𝑝
(𝑘)} ,

Λ
𝑗
(𝑘) ∈ [−𝜂

𝑗
, 𝜂
𝑗
] , 𝑗 = 1, . . . , 𝑝.

(9)

In this filtering problem, the measured output received in
the filter side is involved with the effects of quantization and
communication delay, and it is described by

𝑦
𝑓
(𝑘) = (1 − 𝜃

𝑘
) 𝑞 (𝜙 (𝑦

𝑘
)) + 𝜃

𝑘
𝑞 (𝜙 (𝑦

𝑘−1
)) + 𝐷𝜐 (𝑘) ,

(10)

with 𝐷 ∈ R𝑝×𝑚, and the stochastic variable 𝜃
𝑘
∈ R is

a Bernoulli distributed white sequence with the probability
distribution as follows:

Prob {𝜃
𝑘
= 1} = E {𝜃

𝑘
} = 𝜃,

Prob {𝜃
𝑘
= 0} = 1 − E {𝜃

𝑘
} = 1 − 𝜃,

var {𝜃
𝑘
} = E {(𝜃

𝑘
− 𝜃)
2

} = (1 − 𝜃) 𝜃 = 𝜃
2

1
,

(11)

where 0 ≤ 𝜃 < 1 is a known positive constant to denote
the probability that the packet will be transmitted successfully
from sensor to filter, and 0 ≤ 𝜃

1
< 1 denotes the variance of

𝜃
𝑘
.
For simplicity, we denote 𝑥

𝑘
:= 𝑥(𝑘), 𝑓

𝑘
:= 𝑓(𝑘, 𝑥

𝑘
), 𝜔
𝑘
:=

𝜔(𝑘), 𝜐
𝑘
:= 𝜐(𝑘), Λ(𝑘) := Λ

𝑘
in the following discussion. In

the light of (4), (10) can be written as

𝑦
𝑓
(𝑘) = (1 − 𝜃

𝑘
) (𝐼
𝑝
+ Δ
𝑘
) (𝜙
𝑠
(𝑦
𝑘
) + 𝐾
1
𝐶𝑥
𝑘
)

+ 𝜃
𝑘
(𝐼
𝑝
+ Δ
𝑘
) (𝜙
𝑠
(𝑦
𝑘−1

) + 𝐾
1
𝐶𝑥
𝑘−1

) + 𝐷𝜐
𝑘
.

(12)

The main objective of this paper is to address the filtering
problem for stochastic system (1) by employing the incom-
plete measurements 𝑦

𝑓
(𝑘). To this end, we consider the

following filter of full order 𝑛:

𝑥 (𝑘 + 1) = 𝐴𝑥 (𝑘) + 𝐵𝑦
𝑓
(𝑘) , 𝑥 (𝑘) = 0,

�̂� (𝑘) = 𝐿𝑥 (𝑘) ,

(13)

where 𝑥(𝑘) ∈ R𝑝 is the state of the filter, and �̂�(𝑘) ∈ R𝑟 is the
estimated signal; 𝐴 ∈ R𝑛×𝑛 and 𝐵 ∈ R𝑛×𝑚 are filter gains to
be designed.
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We define the following error variables:

𝑒
𝑥
(𝑘) ≜ 𝑥 (𝑘) − 𝑥 (𝑘) . (14)

Subtracting (13) from (1) and considering the imperfect
output measurements (12), we obtain the filtering error
dynamics as follows:

𝑒
𝑥
(𝑘 + 1) = [𝐴 − 𝐴 − (𝐼

𝑝
+ Δ
𝑘
) 𝐵𝐾
1
𝐶] 𝑥
𝑘

+ 𝐴𝑒
𝑥
(𝑘) − 𝐵 (𝐼

𝑝
+ Δ
𝑘
) 𝜙
𝑠
(𝑦
𝑘
)

+ [𝐸𝑥
𝑘
+ 𝐺𝜐
𝑘
] 𝜔
𝑘
− 𝐵𝐷𝜐

𝑘

+ 𝐵 (𝜃
𝑘
− 𝜃) (𝐼

𝑝
+ Δ
𝑘
) [𝜙
𝑠
(𝑦
𝑘
) + 𝐾
1
𝐶𝑥
𝑘
]

+ 𝐵𝜃 (𝐼
𝑝
+ Δ
𝑘
) [𝜙
𝑠
(𝑦
𝑘
) + 𝐾
1
𝐶𝑥
𝑘
]

− 𝐵 (𝜃
𝑘
− 𝜃) (𝐼

𝑝
+ Δ
𝑘−1

) [𝜙
𝑠
(𝑦
𝑘−1

) + 𝐾
1
𝐶𝑥
𝑘−1

]

− 𝐵𝜃 (𝐼
𝑝
+ Δ
𝑘−1

) [𝜙
𝑠
(𝑦
𝑘−1

) + 𝐾
1
𝐶𝑥
𝑘−1

] .

(15)

We define the following error variables:

𝑒 (𝑘) ≜ [𝑥
𝑇

𝑘
, 𝑒
𝑇

𝑥
(𝑘)]
𝑇

, 𝑒
𝑧
(𝑘) ≜ 𝑧 (𝑘) − �̂� (𝑘) . (16)

Combining the error dynamics (15) with the plant (1), we
obtain the following augmented filtering error dynamics:

𝑒 (𝑘 + 1) = (𝐴
1
+ Δ𝐴
1
) 𝑒
𝑘
+ (𝐻
1
+ Δ𝐻

1
) 𝜙
𝑠
(𝑦
𝑘
) + 𝐵
1
𝜐
𝑘

+ (𝜃
𝑘
− 𝜃)

× {(𝐴
2
+ Δ𝐴
2
) 𝑒
𝑘
+ (𝐻
2
+ Δ𝐻

2
) 𝜙
𝑠
(𝑦
𝑘
)}

+ (𝜃
𝑘
− 𝜃)

× {(𝐴
3
+ Δ𝐴
3
) 𝑒
𝑘−1

+ (𝐻
3
+ Δ𝐻

3
) 𝜙
𝑠
(𝑦
𝑘−1

)}

+ (𝐻
4
+ Δ𝐻

4
) 𝜙 (𝑦

𝑘−1
) + (𝐴

4
+ Δ𝐴
4
) 𝑒
𝑘−1

+ (𝐸𝑒
𝑘
+ 𝐺𝜐
𝑘
) 𝜔
𝑘
,

𝑒
𝑧
(𝑘) = 𝐿𝑒 (𝑘) ,

(17)

where

𝐴
1
= [

𝐴, 0

𝐴 − 𝐴 − 𝜃𝐵𝐾
1
𝐶, 𝐴

] , 𝐴
2
= [

0, 0

𝐵𝐾
1
𝐶, 0

] ,

𝐴
3
= [

0, 0

−𝐵𝐾
1
𝐶, 0

] , 𝐴
4
= [

0, 0

−𝜃𝐵𝐾
1
𝐶, 0

] ,

𝐵
1
= [

𝐵

𝐵𝐷
] , 𝐵

3
= [

0

−𝐵𝐷
] , 𝐵

4
= [

0

−𝜃𝐵𝐷
] ,

𝐻
1
= [

0

(𝜃 − 1) 𝐵
] , 𝐻

2
= [

0

𝐵
] ,

𝐻
3
= [

0

−𝐵
] , 𝐻

4
= [

0

−𝜃𝐵
] ,

Δ𝐴
1
= [

𝐴, 0

(𝜃 − 1) 𝐵Λ
𝑘
𝐾
1
𝐶, 0

] , Δ𝐴
2
= [

0, 0

𝐵Λ
𝑘
𝐾
1
𝐶, 0

] ,

Δ𝐴
3
= [

0, 0

−𝐵Λ
𝑘
𝐾
1
𝐶, 0

] , Δ𝐴
4
= [

0, 0

−𝜃𝐵Λ
𝑘
𝐾
1
𝐶, 0

] ,

Δ𝐵
3
= [

0

−𝐵Λ
𝑘−1

𝐷
] , Δ𝐵

4
= [

0

−𝜃𝐵Λ
𝑘−1

𝐷
] ,

Δ𝐻
1
= [

0

(𝜃 − 1) 𝐵Λ
𝑘

] , Δ𝐻
2
= [

0

𝐵Λ
𝑘

] ,

Δ𝐻
3
= [

0

−𝐵Λ
𝑘−1

] , Δ𝐻
4
= [

0

−𝜃𝐵Λ
𝑘−1

] ,

𝐸 = [
𝐸 0

𝐸 0
] , 𝐺 = [

𝐺

𝐺
] ,

𝐿 = [0, 𝐿] .

(18)

For simplicity, we denote

𝐴
1
:= 𝐴
1
+ Δ𝐴
1
(𝑘) , 𝐴

2
:= 𝐴
2
+ Δ𝐴
2
(𝑘) ,

𝐴
3
:= 𝐴
3
+ Δ𝐴
3
(𝑘) , 𝐴

4
:= 𝐴
4
+ Δ𝐴
4
(𝑘) ,

𝐵
3
:= 𝐵
3
+ Δ𝐵
3
(𝑘) , 𝐵

4
:= 𝐵
4
+ Δ𝐵
4
(𝑘) ,

�̃�
1
:= 𝐻
1
+ Δ𝐻

1
(𝑘) , �̃�

2
:= 𝐻
2
+ Δ𝐻

2
(𝑘) ,

�̃�
3
:= 𝐻
3
+ Δ𝐻

3
(𝑘) , �̃�

4
:= 𝐻
4
+ Δ𝐻

4
(𝑘) ,

(19)

in the following discussion.
System (17) contains sector-bounded uncertainty Λ

𝑘
and

stochastic parameters 𝜃
𝑘
, and thus it is an uncertain stochastic

parameter system where the uncertainties resulted from the
quantization error. Due to this fact, it is required to introduce
the notion of stochastic stability before proceeding with the
subsequent analysis.

Before formulating the problem to be investigated, we
introduce the following definition and lemma.
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Definition 2 (see [17]). The stochastic system (17) under
𝜐(𝑘) = 0 is said to be stochastically stable if there exists a
scalar 𝛽 > 0 such that

E{
∞

∑

𝑘=0

‖𝑥 (𝑘)‖
2

} ≤ 𝛽E {‖𝑥 (0)‖
2

} . (20)

Lemma3 (see [18]). For any real vectors 𝑎, 𝑏 andmatrix𝑅 > 0

of compatible dimensions, the following inequality holds:

𝑎
𝑇

𝑏 + 𝑏
𝑇

𝑎 ≤ 𝑎
𝑇

𝑅𝑎 + 𝑏
𝑇

𝑅
−1

𝑏. (21)

In the sequel, themain objective of this paper is as follows.

𝐻
∞

Filtering Problem. Given a disturbance attenuation level
𝛾 > 0, the parameters 𝐴 and 𝐵 of filter (13) are designed such
that (i) the resulting filtering error system is stochastically
stable for 𝜐(𝑘) = 0, and (ii) for any function 𝜙(⋅) ∈ [𝐾

1
, 𝐾
2
],

‖𝑧 − �̂�‖
𝐸
2

< 𝛾‖𝜐
𝑘
‖
𝐸
2

holds under zero initial conditions for all
𝜐(𝑘) ∈ L

𝐸
2

([0,∞);R𝑚).

3. Filtering Performance Analysis

In this section, we shall focus on the 𝐻
∞

performance,
that is, presenting sufficient conditions under which the𝐻

∞

performance index is achieved for a given filter.

Theorem 4. If there exist positive and definite matrices 𝑃 ∈

R𝑛×𝑛, such that the following matrix inequality constraint
holds:

Γ ≜

[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[

[

−𝑃 + 𝐿
𝑇

𝐿 0 𝐶
𝑇

𝐾
𝑇

0 0 𝐴
𝑇

1
𝐴
𝑇

2

∗ −𝛾
2

𝐼
𝑚

0 0 0 𝐵
𝑇

1
0

∗ ∗ −2𝐼
𝑝

0 0 −�̃�
𝑇

1
�̃�
𝑇

2

∗ ∗ ∗ −𝑄 𝐶
𝑇

𝐾
𝑇

𝐴
𝑇

4
𝐴
𝑇

3

∗ ∗ ∗ ∗ −2𝐼
𝑝

�̃�
𝑇

4
�̃�
𝑇

3

∗ ∗ ∗ ∗ ∗ −𝑃
−1

0

∗ ∗ ∗ ∗ ∗ ∗ −𝜃
2

1
𝑃
−1

]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]

]

< 0,

(22)

then the filtering error system (17) is stochastically stable.

Proof. Consider the filtering error system (17) with 𝜐(𝑘) = 0,
select the stochastic Lyapunov functional candidate as

𝑉 (𝑒 (𝑘) , 𝑘) = 𝑒
𝑇

(𝑘) 𝑃𝑒 (𝑘) + 𝑒
𝑇

𝑘−1
𝑄𝑒
𝑘−1

, (23)

with 𝑃 = [
𝑃
1
0

0 𝑃
2

] > 0, 𝑄 = [
𝑄
1
0

0 𝑄
2

] > 0. It follows from (17)
that

Δ𝑉 (𝑘) = E {𝑉 (𝑒 (𝑘 + 1) , 𝑘 + 1) | 𝑥
𝑘
, 𝑒
𝑘
} − 𝑉 (𝑒 (𝑘) , 𝑘)

= [𝐴
1
𝑒
𝑘
+ �̃�
1
𝜙
𝑠
(𝑦
𝑘
) + 𝐴
4
𝑒
𝑘−1

+ �̃�
4
𝜙 (𝑦
𝑘−1

)]
𝑇

× 𝑃 [𝐴
1
𝑒
𝑘
+ �̃�
1
𝜙
𝑠
(𝑦
𝑘
) + 𝐴
4
𝑒
𝑘−1

+ �̃�
4
𝜙 (𝑦
𝑘−1

)]

+ (𝐸𝑒
𝑘
)
𝑇

𝑃𝐸𝑒
𝑘
− 𝑒
𝑇

𝑘
𝑄𝑒
𝑘
− 𝑒
𝑇

𝑘−1
𝑄𝑒
𝑘−1

+ E {(𝜃
𝑘
− 𝜃)
2

}

× [𝐴
2
𝑒
𝑘
+ �̃�
2
𝜙
𝑠
(𝑦
𝑘
) + 𝐴
3
𝑒
𝑘−1

+ �̃�
3
𝜙 (𝑦
𝑘−1

)]
𝑇

× 𝑃 [𝐴
1
𝑒
𝑘
+ �̃�
1
𝜙
𝑠
(𝑦
𝑘
) + 𝐴
4
𝑒
𝑘−1

+ �̃�
4
𝜙 (𝑦
𝑘−1

)] .

(24)

Notice that E{(𝜃
𝑘
− 𝜃)
2

} = 𝜃
2

1
, and thus we have

Δ𝑉 (𝑘) = [𝐴
1
𝑒
𝑘
+ �̃�
1
𝜙
𝑠
(𝑦
𝑘
) + 𝐴
4
𝑒
𝑘−1

+ �̃�
4
𝜙 (𝑦
𝑘−1

)]
𝑇

× 𝑃 [𝐴
1
𝑒
𝑘
+ �̃�
1
𝜙
𝑠
(𝑦
𝑘
) + 𝐴
4
𝑒
𝑘−1

+ �̃�
4
𝜙 (𝑦
𝑘−1

)]

+ (𝐸𝑒
𝑘
)
𝑇

𝑃 (𝐸𝑒
𝑘
) − 𝑒
𝑇

𝑘
𝑄𝑒
𝑘
− 𝑒
𝑇

𝑘−1
𝑄𝑒
𝑘−1

+ 𝜃
2

1
[𝐴
2
𝑒
𝑘
+ �̃�
2
𝜙
𝑠
(𝑦
𝑘
) + 𝐴
3
𝑒
𝑘−1

+ �̃�
3
𝜙 (𝑦
𝑘−1

)]
𝑇

× 𝑃 [𝐴
1
𝑒
𝑘
+ �̃�
1
𝜙
𝑠
(𝑦
𝑘
) + 𝐴
4
𝑒
𝑘−1

+ �̃�
4
𝜙 (𝑦
𝑘−1

)] .

(25)

In fact, for the saturation function 𝜙
𝑠
(𝑦
𝑘
), from (5) we have

that

−2𝜙
𝑇

𝑠
(𝑦
𝑘
) 𝜙
𝑠
(𝑦
𝑘
) + 2𝜙

𝑇

𝑠
(𝑦
𝑘
)𝐾𝑦
𝑘
> 0,

−2𝜙
𝑇

𝑠
(𝑦
𝑘−1

) 𝜙
𝑠
(𝑦
𝑘−1

) + 2𝜙
𝑇

𝑠
(𝑦
𝑘−1

)𝐾𝑦
𝑘−1

> 0,

(26)

which implies that

−2𝜙
𝑇

𝑠
(𝑦
𝑘
) 𝜙
𝑠
(𝑦
𝑘
) + 2𝜙

𝑇

𝑠
(𝑦
𝑘
)𝐾𝐶𝑒

𝑘
> 0,

−2𝜙
𝑇

𝑠
(𝑦
𝑘−1

) 𝜙
𝑠
(𝑦
𝑘−1

) + 2𝜙
𝑇

𝑠
(𝑦
𝑘−1

)𝐾𝐶𝑒
𝑘−1

> 0,

(27)

with 𝐶 ≜ [𝐶, 0].
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In the light of (26), (27), and (24), one can obtain

Δ𝑉 (𝑘) = [𝐴
1
𝑒
𝑘
+ �̃�
1
𝜙
𝑠
(𝑦
𝑘
) + 𝐴
4
𝑒
𝑘−1

+ �̃�
4
𝜙 (𝑦
𝑘−1

)]
𝑇

× 𝑃 [𝐴
1
𝑒
𝑘
+ �̃�
1
𝜙
𝑠
(𝑦
𝑘
) + 𝐴
4
𝑒
𝑘−1

+ �̃�
4
𝜙 (𝑦
𝑘−1

)]

+ (𝐸𝑒
𝑘
)
𝑇

𝑃 (𝐸𝑒
𝑘
) − 𝑒
𝑇

𝑘
𝑄𝑒
𝑘
− 𝑒
𝑇

𝑘−1
𝑄𝑒
𝑘−1

+ 𝜃
2

1
[𝐴
2
𝑒
𝑘
+ �̃�
2
𝜙
𝑠
(𝑦
𝑘
) + 𝐴
3
𝑒
𝑘−1

+ �̃�
3
𝜙 (𝑦
𝑘−1

)]
𝑇

× 𝑃 [𝐴
1
𝑒
𝑘
+ �̃�
1
𝜙
𝑠
(𝑦
𝑘
) + 𝐴
4
𝑒
𝑘−1

+ �̃�
4
𝜙 (𝑦
𝑘−1

)]

− 2𝜙
𝑇

𝑠
(𝑦
𝑘
) 𝜙
𝑠
(𝑦
𝑘
) + 𝑒
𝑇

(𝑘) 𝐶
𝑇

𝐾
𝑇

𝜙
𝑠
(𝑦
𝑘
)

+ 𝜙
𝑇

𝑠
(𝑦
𝑘
)𝐾𝐶𝑒 (𝑘) − 2𝜙

𝑇

𝑠
(𝑦
𝑘−1

) 𝜙
𝑠
(𝑦
𝑘−1

)

+ 𝑒
𝑇

𝑘−1
𝐶
𝑇

𝐾
𝑇

𝜙
𝑠
(𝑦
𝑘−1

) + 𝜙
𝑇

𝑠
(𝑦
𝑘−1

)𝐾𝐶𝑒
𝑘−1

.

(28)

The following proof is divided into the following two parts:
(i) a proof that the filtering error system (17) is stochastically
stable with 𝜐(𝑘) = 0, and (ii) a proof that ‖𝑒

𝑧
(𝑘)‖
𝐸
2

< 𝛾‖𝜐
𝑘
‖
𝐸
2

.
(i) Firstly, we establish the stochastic stability of the

filtering error system (17) under the condition (22). It follows
from (28) with 𝜐

𝑘
= 0 that

Δ𝑉 (𝑘) = [𝐴
1
𝑒
𝑘
+ �̃�
1
𝜙
𝑠
(𝑦
𝑘
) + 𝐴
4
𝑒
𝑘−1

+ �̃�
4
𝜙 (𝑦
𝑘−1

)]
𝑇

× 𝑃 [𝐴
1
𝑒
𝑘
+ �̃�
1
𝜙
𝑠
(𝑦
𝑘
) + 𝐴
4
𝑒
𝑘−1

+ �̃�
4
𝜙 (𝑦
𝑘−1

)]

+ 𝑒
𝑇

𝑘
𝐸
𝑇

𝑃𝐸𝑒
𝑘
− 𝑒
𝑇

𝑘
𝑄𝑒
𝑘
− 𝑒
𝑇

𝑘−1
𝑄𝑒
𝑘−1

+ 𝜃
2

1
[𝐴
2
𝑒
𝑘
+ �̃�
2
𝜙
𝑠
(𝑦
𝑘
) + 𝐴
3
𝑒
𝑘−1

+ �̃�
3
𝜙 (𝑦
𝑘−1

)]
𝑇

× 𝑃 [𝐴
1
𝑒
𝑘
+ �̃�
1
𝜙
𝑠
(𝑦
𝑘
) + 𝐴
4
𝑒
𝑘−1

+ �̃�
4
𝜙 (𝑦
𝑘−1

)]

− 2𝜙
𝑇

𝑠
(𝑦
𝑘
) 𝜙
𝑠
(𝑦
𝑘
) + 𝑒
𝑇

(𝑘) 𝐶
𝑇

𝐾
𝑇

𝜙
𝑠
(𝑦
𝑘
)

+ 𝜙
𝑇

𝑠
(𝑦
𝑘
)𝐾𝐶𝑒 (𝑘) − 2𝜙

𝑇

𝑠
(𝑦
𝑘−1

) 𝜙
𝑠
(𝑦
𝑘−1

)

+ 𝑒
𝑇

𝑘−1
𝐶
𝑇

𝐾
𝑇

𝜙
𝑠
(𝑦
𝑘−1

) + 𝜙
𝑇

𝑠
(𝑦
𝑘−1

)𝐾𝐶𝑒
𝑘−1

≤ 𝜉
𝑇

(𝑘)Π𝜉 (𝑘) ,

(29)

where

𝜉 (𝑘) ≜ [𝑒
𝑇

(𝑘) , 𝜙
𝑇

𝑠
(𝑦
𝑘
) , 𝑒
𝑇

(𝑘 − 1) , 𝜙
𝑇

𝑠
(𝑦
𝑘−1

)]
𝑇

,

Π ≜ [
𝐴
1
�̃�
1
𝐴
4
�̃�
4

𝐴
2
�̃�
2
𝐴
3
�̃�
3

]

𝑇

[
𝑃 0

0 𝜃
2

1
𝑃
] [

𝐴
1
�̃�
1
𝐴
4
�̃�
4

𝐴
2
�̃�
2
𝐴
3
�̃�
3

]

+

[
[
[
[

[

−𝑃 + 𝐿
𝑇

𝐿 𝐶
𝑇

𝐾
𝑇

0 0

∗ −2𝐼
𝑝

0 0

∗ ∗ −𝑄 𝐶
𝑇

𝐾
𝑇

∗ ∗ ∗ −2𝐼
𝑝

]
]
]
]

]

.

(30)

It is obvious that if Π < 0, one can obtain that Δ𝑉(𝑘) <
0. Therefore, it follows from Kolmanovskii and Myshkis
[19] that the filtering error system (17) with 𝜐(𝑘) = 0 is
stochastically stable. On the other hand, by means of Schur’s
complement, Π < 0 is equivalent to the following matrix
condition:

[
[
[
[
[
[
[
[
[
[
[
[
[
[

[

−𝑃 + 𝐿
𝑇

𝐿 𝐶
𝑇

𝐾
𝑇

0 0 𝐴
𝑇

1
𝐴
𝑇

2

∗ −2𝐼
𝑝

0 0 �̃�
𝑇

1
�̃�
𝑇

2

∗ ∗ −𝑄 𝐶
𝑇

𝐾
𝑇

𝐴
𝑇

4
𝐴
𝑇

3

∗ ∗ ∗ −2𝐼
𝑝

�̃�
𝑇

4
�̃�
𝑇

3

∗ ∗ ∗ ∗ −𝑃
−1

0

∗ ∗ ∗ ∗ ∗ −𝜃
2

𝑃
−1

]
]
]
]
]
]
]
]
]
]
]
]
]
]

]

< 0.

(31)

Notice that the condition (22) can imply (31).Thismeans that
if there exist positive and definitematrices𝑃, such thatmatrix
condition (22) holds, then system (17) is stochastically stable.

(ii) Next, the objective should be devoted to prove that the
filtering error system (17) satisfies

𝑒𝑧 (𝑘)
𝐸
2

< 𝛾
𝜐𝑘

𝐸
2

, (32)

for all nonzero 𝜐(𝑘) ∈ L
𝐸
2

([0,∞);R𝑚).
In fact, under zero initial conditions, it is shown that

E {𝑉 (𝑒 (𝑘) , 𝑡)} = E{
𝑁

∑

𝑘=1

Δ𝑉 (𝑘)} . (33)

We define the following performance index function:

𝐽 (𝑘) = E{
𝑁

∑

𝑘=1

[𝑒
𝑇

𝑧
(𝑘) 𝑒
𝑧
(𝑘) − 𝛾

2

𝜐
𝑇

𝑘
𝜐
𝑘
]} , (34)

for any integer𝑁.
It follows from (34) that

𝐽 (𝑘) = E{
𝑁

∑

𝑘=1

[𝑒
𝑇

𝑧
(𝑘) 𝑒
𝑧
(𝑘) − 𝛾

2

𝜐
𝑇

𝑘
𝜐
𝑘
+ Δ𝑉 (𝑘)]}

− E {𝑉 (𝑒 (𝑘) ,𝑁)}

≤ E{
𝑁

∑

𝑘=1

𝜁
𝑇

(𝑘) Ξ𝜁 (𝑘)} ,

(35)



www.manaraa.com

Mathematical Problems in Engineering 7

where

𝜁 (𝑘) ≜ [𝑒
𝑇

(𝑘) , 𝜐
𝑇

(𝑘), 𝜙
𝑇

𝑠
(𝑦
𝑘
) , 𝑒
𝑇

(𝑘 − 1) , 𝜙
𝑇

𝑠
(𝑦
𝑘−1

)]
𝑇

,

Ξ ≜ [
𝐴
1
𝐵
1
�̃�
1
𝐴
4
�̃�
4

𝐴
2

0 �̃�
2
𝐴
3
�̃�
3

]

𝑇

[
𝑃 0

0 𝜃
2

1
𝑃
]

× [
𝐴
1
𝐵
1
�̃�
1
𝐴
4
�̃�
4

𝐴
2

0 �̃�
2
𝐴
3
�̃�
3

]

+

[
[
[
[
[
[

[

−𝑃 + 𝐿
𝑇

𝐿 0 𝐶
𝑇

𝐾
𝑇

0 0

∗ −𝛾
2

𝐼
𝑚

0 0 0

∗ ∗ −2𝐼
𝑝

0 0

∗ ∗ ∗ −𝑄 𝐶
𝑇

𝐾
𝑇

∗ ∗ ∗ ∗ −2𝐼
𝑝

]
]
]
]
]
]

]

.

(36)

From (35), it can be shown that if Ξ < 0 holds, then
𝐽(𝑘) < 0, which implies that (32) holds for any nonzero
𝜐(𝑘) ∈ L

𝐸
2

([0,∞);R𝑚). Furthermore, it is easy to see that
Ξ < 0 is equivalent to the condition (22). This means that the
condition (22) inTheorem 4 can imply ‖𝑒

𝑧
(𝑘)‖
𝐸
2

< 𝛾‖𝜐(𝑘)‖
𝐸
2

.
This completes the proof.

4. 𝐻
∞

Filter Design

In this section, the attention should be paid on coping with
the addressed filter design problem for the discrete-time
stochastic system (1) based onTheorem 4.

Lemma 5 (see [18]). Let 𝑄, 𝑅, and 𝐹(𝑡) be real matrices of
appropriate dimensions with 𝐹(𝑡) satisfying 𝐹𝑇(𝑡)𝐹(𝑡) < 𝐼.
Then, for any scalar 𝜀 > 0,

𝑄𝐹 (𝑡) 𝑅 + 𝑅
𝑇

𝐹
𝑇

(𝑡) 𝑄
𝑇

≤ 𝜀𝑄𝑄
𝑇

+ 𝜀
−1

𝑅
𝑇

𝑅. (37)

The following theorem provides the sufficient LMI condition
for the existence of the proposed robust filter (13).

Theorem 6. Consider the discrete-time stochastic system (1),
for a given disturbance level 𝛾 > 0, if there exist positive and
definite matrices 𝑋, 𝑌 ∈ R𝑛×𝑛, and matrices 𝑊 ∈ R𝑛×𝑛 and
𝑈 ∈ R𝑛×𝑚, and positive scalars 𝜀

1
, 𝜀
2
, and 𝜀

3
such that the

following LMI holds:

[

[

Φ
11

Φ
12

Φ
13

∗ Φ
22

Φ
23

∗ ∗ Φ
33

]

]

< 0, (38)

with

Φ
11
=

[
[
[
[
[
[
[
[
[
[
[
[
[
[

[

Γ̃
11

0 0 𝐶
𝑇

𝐾
𝑇

0 0 0

∗ Γ̃
22

0 0 0 0 0

∗ ∗ Γ̃
33

0 0 0 0

∗ ∗ ∗ Γ̃
44

0 0 0

∗ ∗ ∗ ∗ −𝑄
1

0 𝐶
𝑇

𝐾
𝑇

∗ ∗ ∗ ∗ ∗ −𝑄
2

0

∗ ∗ ∗ ∗ ∗ ∗ −2𝐼
𝑝

]
]
]
]
]
]
]
]
]
]
]
]
]
]

]

,

Φ
12
=

[
[
[
[
[
[
[
[
[
[
[
[
[
[

[

𝐴
𝑇

𝑋 Γ̃
1,9

0 Γ̃
1,11

0 𝐴
𝑇

𝑌 0 0

0 Γ̃
3,9

0 𝐷
𝑇

𝑈
𝑇

0 Γ̃
4,9

0 𝑈
𝑇

0 Γ̃
5,9

0 Γ̃
5,11

0 0 0 0

0 −𝜃𝑈
𝑇

0 −𝑈
𝑇

]
]
]
]
]
]
]
]
]
]
]
]
]
]

]

,

Φ
13
=

[
[
[
[
[
[
[
[
[
[
[
[
[

[

0 0 0 𝐸
𝑇

𝑋 𝐸
𝑇

𝑌

0 0 0 0 0

0 0 0 𝐺
𝑇

𝑋 𝐺
𝑇

𝑌

0 0 0 0 0

0 0 0 0 0

0 0 0 0 0

0 0 0 0 0

]
]
]
]
]
]
]
]
]
]
]
]
]

]

,

Φ
22
= diag {−𝑋, −𝑌, −𝜃2

1
𝑋, −𝜃
2

1
𝑌} ,

Φ
23
=

[
[
[
[
[

[

0 0 0 0 0

Γ̃
9,12

Γ̃
9,13

Γ̃
9,14

0 0

0 0 0 0 0

𝑈 𝑈 𝑈 0 0

]
]
]
]
]

]

,

Φ
33
= diag {−𝜀

1
𝐼
𝑝
, −𝜀
2
𝐼
𝑝
, −𝜀
3
𝐼
𝑝
, −𝑋, −𝑌} ,

Γ̃
11
= −𝑃 + 𝐿

𝑇

𝐿 + 𝜀
1
𝐶
𝑇

𝐾
𝑇

1
Δ
𝑇

Δ𝐾
1
𝐶,

Γ̃
1,9

= 𝐴
𝑇

𝑌 − 𝐴
𝑇

𝑌 + (𝜃 − 1)𝐶
𝑇

𝐾
𝑇

1
𝐵
𝑇

𝑌,

Γ̃
1,11

= 𝐴
𝑇

𝑌 −𝑊
𝑇

+ (𝜃 − 1)𝐶
𝑇

𝐾
𝑇

1
𝑈
𝑇

,

Γ̃
22
= −𝑌 + 𝐿

𝑇

𝐿,

Γ̃
33
= −𝛾
2

𝐼
𝑟
+ 𝜀
2
𝐷
𝑇

ΔΔ𝐷,

Γ̃
3,9

= (𝜃 − 1)𝐷
𝑇

𝑈
𝑇

,

Γ̃
4,4

= −2𝐼
𝑝
+ 𝜀
3
ΔΔ,

Γ̃
4,9

= (𝜃 − 1)𝑈
𝑇

,
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Figure 2: 𝑥
1
(𝑘) and 𝑥

1
(𝑘).

Γ̃
5,9

= −𝜃𝐶
𝑇

𝐾
𝑇

1
𝑈
𝑇

,

Γ̃
5,11

= −𝐶
𝑇

𝐾
𝑇

1
𝑌,

Γ̃
9,12

= Γ̃
9,13

= Γ̃
9,14

= −𝜃𝑈,

(39)

then the 𝐻
∞

filtering problem is solved by the filter (13).
Furthermore, the filter gains are given by

𝐴 = 𝑌
−1

𝑊, 𝐵 = 𝑌
−1

𝑈. (40)

Proof. Thematrix condition (22) inTheorem 4 can be rewrit-
ten as

[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[

[

Γ
11

0 𝐶
𝑇

𝐾
𝑇

0 0 0 𝐴
𝑇

1
𝐴
𝑇

2

∗ Γ
22

0 0 0 0 𝐵
𝑇

1
0

∗ ∗ −2𝐼
𝑝

0 0 0 −𝐻
𝑇

1
𝐻
𝑇

2

∗ ∗ ∗ −𝑄 0 𝐶
𝑇

𝐾
𝑇

𝐴
𝑇

4
𝐴
𝑇

3

∗ ∗ ∗ ∗ −𝛾
2

𝐼
𝑚

0 𝐵
𝑇

4
𝐵
𝑇

3

∗ ∗ ∗ ∗ ∗ −2𝐼
𝑝

𝐻
𝑇

4
𝐻
𝑇

3

∗ ∗ ∗ ∗ ∗ ∗ −𝑃
−1

0

∗ ∗ ∗ ∗ ∗ ∗ ∗ −𝜃
2

1
𝑃
−1

]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]

]

+𝑀
1
Λ
𝑘
𝑁
1
+ 𝑁
𝑇

1
Λ
𝑘
𝑀
𝑇

1
+𝑀
2
Λ
𝑘
𝑁
2

+ 𝑁
𝑇

2
Λ
𝑘
𝑀
𝑇

2
+𝑀
1
Λ
𝑘
𝑁
3
+ 𝑁
𝑇

3
Λ
𝑘
𝑀
𝑇

1
< 0,

(41)

where

𝑀
1
= [0, 0, 0, 0, 0, 0,𝐻

𝑇

1
, 𝐻
𝑇

2
]

𝑇

,

𝑁
1
= [𝐾
1
𝐶, 0, 0, 𝐾

1
𝐶, 0, 0, 0, 0] ,

𝑁
2
= [0, 𝐷, 0, 0, 𝐷, 0, 0, 0]

𝑇

,

𝑁
3
= [0, 0, 𝐼, 0, 0, 𝐼, 0, 0]

𝑇

.

(42)

In the light of Lemma 5, it is shown that the condition (41)
holds if the following condition holds:

[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[

[

Γ
11

0 𝐶
𝑇

𝐾
𝑇

0 0 0 𝐴
𝑇

1
𝐴
𝑇

2
0 0 0

∗ Γ
22

0 0 0 0 𝐵
𝑇

1
0 0 0 0

∗ ∗ −2𝐼
𝑝

0 0 0 −𝐻
𝑇

1
𝐻
𝑇

2
0 0 0

∗ ∗ ∗ −𝑄 0 𝐶
𝑇

𝐾
𝑇

𝐴
𝑇

4
𝐴
𝑇

3
0 0 0

∗ ∗ ∗ ∗ −𝛾
2

𝐼
𝑚

0 𝐵
𝑇

4
𝐵
𝑇

3
0 0 0

∗ ∗ ∗ ∗ ∗ −2𝐼
𝑝

𝐻
𝑇

4
𝐻
𝑇

3
0 0 0

∗ ∗ ∗ ∗ ∗ ∗ −𝑃
−1

0 (𝜃 − 1)𝐻
2
(𝜃 − 1)𝐻

2
(𝜃 − 1)𝐻

2

∗ ∗ ∗ ∗ ∗ ∗ ∗ −𝜃
2

1
𝑃
−1

𝐻
2

𝐻
2

𝐻
2

∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ −𝜀
1
𝐼
𝑚

0 0

∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ −𝜀
2
𝐼
𝑚

0

∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ −𝜀
3
𝐼
𝑚

]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]

]

< 0. (43)
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Figure 3: 𝑥
2
(𝑘) and 𝑥

2
(𝑘).

Multiply diag{𝐼, 𝐼, 𝐼, 𝐼, 𝐼, 𝐼, 𝑃
1
, 𝑃
1
, 𝐼, 𝐼, 𝐼} and its transpose on

the left side and the right side of (43), respectively, and let
𝑊 = 𝑌𝐴, 𝑈 = 𝑌𝐵, one can obtain the condition (38). This
means that if there exist scalars 𝜀

1
> 0, 𝜀

2
> 0, 𝜀

3
> 0

such that the LMI condition (38) holds, then the error system
(17) is stochastically stable, and the 𝐻

∞
performance (32) is

guaranteed. This completes the proof.

Remark 7. The LMI condition (38) of Theorem 6 is not
conservative, since the system matrix 𝐴 has been supposed
to be stable.

5. Simulation

We consider the system (1) with the following data: 𝑛 = 3,
𝑚 = 2, and 𝑝 = 2, 𝑟 = 2. For the logarithmic quantizer (7),
the quantizer densities are chosen as 𝜌

1
= 0.6667 and 𝜌

2
=

0.7391. The initial quantizer points are chosen as 𝜂(0)
1

= 40

and 𝜂(0)
2

= 40. It can be calculated that 𝛿
1
= 0.2 and 𝛿

2
= 0.15.

The random communication delay parameters are selected

as 𝜃 = 0.6, and 𝜃
1
= √𝜃(1 − 𝜃) = 0.4899. The saturation

parameter matrices are selected as follows:

𝐾
1
= [

0.6 0

0 0.7
] , 𝐾

2
= [

0.8 0

0 0.8
] , (44)

and 𝜙(𝑦
𝑘
) = (𝐾

1
+ 𝐾
2
)/2𝑦
𝑘
+ (𝐾
2
− 𝐾
1
)/2 sin(𝑦

𝑘
).

Besides, the model parameters are given as follows:

𝐴 = [

[

−0.3 0 0.01

−0.59 −0.24 0.02

0.1 −0.06 −0.68

]

]

, 𝐵 = [

[

−0.202

0.383

0.139

]

]

,

𝐶 = [
−0.2 −0.1 −0.2

0.5 0.2 0.21
] , 𝐷 = [

0.1

0.47
] ,

𝐸 = [

[

−0.12 −0.11 0.38

0.11 0.64 −0.18

−0.31 −0.63 −0.6

]

]

,

𝐺 = [

[

−0.13

0.11

0.051

]

]

, 𝐿 = [
0.1 0.09 0.1

0.05 0.05 0.05
] .

(45)

Without loss of generality, we assume that the noises 𝜐(𝑘) in
system (1) have the following form:

𝜐 (𝑘) =
1

0.1 + 𝑘2
, (46)

and it can be checked that 𝜐(𝑘) satisfies the constraint (2).
Solving the LMI condition (38), one can obtain the following
solutions:

𝑋 = [

[

3.6195 3.3264 2.2784

3.3264 10.8295 2.5230

2.2784 2.5230 7.4548

]

]

,

𝑌 = [

[

4.3244 1.5752 1.6206

1.5752 2.3707 0.2978

1.6206 0.2978 2.3496

]

]

,

𝑊 = [

[

−1.3882 −0.4611 −0.7446

−1.1207 −0.0697 −0.4972

−0.4623 −0.1005 −1.4395

]

]

,

𝑈 = [

[

0.0118 0.0050

0.0469 0.1449

0.0390 0.0963

]

]

.

(47)

The filter gain are then calculated as follows:

𝐴 = [

[

−0.1855 −0.1492 0.1803

−0.3463 0.0632 −0.2408

−0.0249 0.0521 −0.7065

]

]

,

𝐵 = [

[

−0.0165 −0.0580

0.0277 0.0909

0.0245 0.0695

]

]

.

(48)

The initial condition is selected as 𝑥(0) = [1.5 0 − 1]
𝑇,

𝑒(0) = [−0.5 1 1.5]
𝑇, and the quantizer parameter 𝜂

0
is

selected as 𝜂
0
= 50. The trajectories of plant states 𝑥

𝑘
and its

estimates are shown in Figures 2, 3, and 4; the comparisons
of the unquantized saturated outputs 𝜙(𝑦

𝑘
) and quantized

saturated outputs 𝑞(𝜙(𝑦
𝑘
)) are shown in Figures 5 and 6; the

trajectory of the error estimation signal 𝑒
𝑧
(𝑘) = 𝑧(𝑘) − �̂�(𝑘) is

illustrated in Figures 7 and 8. It can be seen that the obtained
state estimation is desirable.
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Figure 4: 𝑥
3
(𝑘) and 𝑥

3
(𝑘).
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Figure 5: 𝜙(𝑦
1
(𝑘)) and quantized 𝜙(𝑦

1
(𝑘)).

6. Conclusion

In this paper, the𝐻
∞
filtering problem has been investigated

for stochastic systems subject to sensor saturation over
limited capacity channel. The plant under consideration is
a class of stochastic systems with random noise depending
on state and external disturbance. In this setting, the effects
of sensor quantization, output logarithmic quantization, and
networked-induced communication delay are taken into
account simultaneously. The phenomenon of random com-
munication delay is described by a Bernoulli type stochastic
variable. Subsequently, the 𝐻

∞
filter is designed for the

0 2 4 6 8 10

0

0.05

0.1

0.15

−0.05

−0.1

No. of samples (𝑘)
𝜑(𝑦2(𝑘))

𝑞(𝜑(𝑦2(𝑘)))

Figure 6: 𝜙(𝑦
2
(𝑘)) and quantized 𝜙(𝑦

2
(𝑘)).
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Figure 7: 𝑧
1
(𝑘) and �̂�

1
(𝑘).

considered plant by employing the quantized output mea-
surements, and sufficient conditions are established for the
existence of the proposed filter.
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